Salahsatu anggota Wali Sanga yang dimasa mudanya dikenal dengan Lokajaya. Ia seringkali melakukan pencurian terhadap harta orang-orang kaya yang tidak mau bersedekah. Hasil curiannya kemudian diberikan kepada para fakir - on Siapa saja nama dan apa penemuannya dari abad 18 ke 19 Benderamerah putih yang dikibarkan pada 17 Agustus 1945 dijahit istri Soekarno, Fatmawati. Jumat, 7 Agustus 2020 sekitar pukul 18.20 WIB. Rabu, 7 November 2018 . Sayap Pesawat Lion Air Tabrak Tiang Lampu Bandara Fatmawati Bengkulu jika Bung Karno dikenal sebagai sosok yang karismatik. Maka tak heran jika banyak wanita yang jatuh hati 5Sebuah tiang bendera yang memiliki tinggi 8 meter. Tiang bendaera tersebut digambar 4 cm pada sebuah buku gambar. Berapakah skala tiang bendera tersebut : A. 1 : 100 B. 1 : 200 C. 1 : 300 D. 1 : 400. Pembahasan : soal di atas sama mencari skala pada denah dengan rumus yang sama. Kita konversikan dahulu 8 meter = 800 cm Maka jawaban yang tepat DiketahuiĪ” DEF dan Ī” PQR sebangun, panjang DE = 9 cm, EF = 12 cm, DF = 6 cm, PQ = 15 cm, PR = 10 cm, dan QR = 20 cm. Perbandingan sisi-sisi pada kedua segitiga tersebut adalah. A. 3 : 4 B. 3 : 5 C. 4 : 5 D. 9 : 10 (UN Matematika SMP Tahun 2015) Soal No. 3 Panjang bayangan tiang bendera yang tingginya 5 m adalah 8 m. A 25 m B. 20 m C. 18 m D. 15 m. 20. Sebuah kolam renang berbentuk persegi pajang berukuran panjang 15 m dan lebar 10 m. di sekeliling kolam dibuat jalan dengan lebar 1 m dan dipasang keramik. Panjang bayangan tiang bendera yang tingginya 5 m adalah 8 m. pada saat sama, sebuah pohon mempunyai bayangan 20 m. tinggi pohon tersebu adalah Sepakbola dikenal sejak ribuan tahun yang lalu. Bukti ilmiah ini memperlihatkan, diCina sejak dinasti Han ada semacam sepakbola yang disebut ā€œtsu chuā€ untuk melatih fisik para tentaranya. Gawnag diletakkan ditengah garis gawan, yang terdiri dari dua tiang tegak, yang tingginya 2,44m dan dihubungkan bdenan tiang horizontal (*yang Mengingatjadwal pelaksanaan UN 2013/2014 Sudah semakin dekat, maka admin akan memberikan postingan yang be Baca selengkapnya Ā» 05.05. 07.18. Unknown 0. 07.18. SEJARAH BENDERA MERAH PUTIH. Apa Kabar,semua? Patungmemiliki tinggi 38 meter dan terletak di puncak dari Gunung Corcovado yang tingginya 710 m di Taman Nasional Hutan Tijuca, yang menghadap ke kota. Asal nama Colosseum berasal dari sebuah patung setinggi 130 kaki atau 40 m yang bernama Colossus. Kelinci Rex Kelinci Rex dikenal dengan kualitas bulunya yang sangat lembut seperti 20 1 4 -2 0 1 5 MATEMATIKA D I L E N G K A P I P E M B A H A S A N. by sri hidayati. Download Free PDF Download PDF Download Free PDF View PDF. UN Matematika SMP. by Puspita Wulan. Download Free PDF Download PDF Download Free PDF View PDF. Penerapan Konsep Kesebangunan dalam Pemecahan Masalah. Polres Majene, Sulawesi Barat, menetapkan empat oknum mahasiswa sebagai tersangka. Terkait penurunan bendera Merah Putih saat berlangsung unjuk rasa di halaman kantor bupati setempat, Senin (23/5). "Dari sembilan oknum mahasiswa yang diambil keterangannya, empat di antaranya kami tetapkan sebagai tersangka," kata Kapolres Melidan Siti ingin membuat kerajinan tangan seperti di atas. Diameter yang diperlukan 14 cm. Tingginya 20 cm, berapa cm² kain flannel yang dibutuhkan? Diketahui : Diameter bola dan kerucut 14 cm. Jari-jari bola dan kerucut 7 cm. Tinggi kerajinan 20 cm. Tinggi kerucut = 20 - 7 = 13 cm Ditanyakan : Luas kain flanel yang dibutuhkan. 20cm c. 50 cm b. 45 cm d. 55 cm 12. Sebuah tiang bendera yang tingginya 5 m berada pada jarak 12 m dari suatu menara dan segaris dengan bayangan menara tersebut. Panjang bayangan tiang bendera tersebut oleh sinar matahari adalah 3 m. Pada gambar berikut diketahui AB = 18 cm, PQ = 6 cm, PR = 5 cm, ABC = PQR, dan BCA = QRP. Panjang BC adalah BalokABCD. EFGH memiliki panjang rusuk AB = 14 cm, AD = 7 cm dan AE = 21. Jarak titik G ke bidang BDE adalah cm a. 1/2 √14 b. 3/2 √14 c. 5/2 √14 d. 7/2 √ Istilahā€˜bendera’ adalah salah satu kosa kata dalam Bahasa Indonesia, yang secara harafiah berarti: sepotong kain atau keratas segi empat atau segi tiga (diikatkan pada ujung tongkat, tiang, dsb.) dipergunakan sebagai lambang negara, perkumpulan, badan, dsb. atau sebagai tanda; panji-panji; tunggul (KBBI, 2002:131). Istilah ini berasa; dari kata ā€˜badira’ atau Menentukanpanjang salah satu sisi atau sudut yang belum diketahui dari dua segitiga yang kongruen Memecahkan masalah yang melibatkan kesebangunan segitiga SOAL : 1. UN-SMP-06-21 Perhatikan gambar berikut ini C F 8 cm 6 cm A 2 cm E x cm B Nilai x adalah A. 1,5 B. 6 C. 8 D. 10 Pembahasan : Bandingkan sisi-sisi yang bersesuaian pada segitiga Priolk. BerandaSebuah tiang bendera yang tingginya 5 m berada pad...PertanyaanSebuah tiang bendera yang tingginya 5 m berada pada jarak 12 m dari suatu menara dan segaris dengan bayangan menara tersebut. Panjang bayangan tiang bendera tersebut oleh sinar matahari adalah 3 m. Tinggimenara tersebut adalah ....Sebuah tiang bendera yang tingginya 5 m berada pada jarak 12 m dari suatu menara dan segaris dengan bayangan menara tersebut. Panjang bayangan tiang bendera tersebut oleh sinar matahari adalah 3 m. Tinggi menara tersebut adalah ....15 m 20 m 25 m 30 m PTP. TessalonikaMaster TeacherMahasiswa/Alumni Universitas Negeri MedanJawabanjawaban yang benar adalah yang benar adalah gambar dibawah ini. Dengan konsep kesebangunan pada segitiga maka tinggi menara adalah Oleh karena itu, jawaban yang benar adalah gambar dibawah ini. Dengan konsep kesebangunan pada segitiga maka tinggi menara adalah Oleh karena itu, jawaban yang benar adalah C. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!1rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!Ā©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia Dushanbe - Melihat tiang bendera di Istana Merdeka, Jakarta, rasanya sudah tinggi ya. Namun itu belum apa-apa dibandingkan kota Dushanbe, Tajikistan yang punya tiang bendera setinggi 164 meter, yang tertinggi di aadalah kota terbesar di Tajikistan, sekaligus menjadi ibukota negara. Satu hal yang bisa menjadi kebanggaan kota ini adalah punya tiang bendera yang menjulang ratusan meter ke langit dan jadi daya tarik traveler dari Atlas Obscura, Senin 17/2/2014 tinag bendera tersebut berada di depan Istana Negara Tajikistan. Pembuatannya dilakukan oleh Trident Support, suatu perusahaan konstruksi yang berbasis di San Diego, itu terdiri atas 12 rakitan pipa baja dan pembangunannya memakan waktu lima bulan. Tak tanggung-tanggung, biaya pembuatannya mencapai USD 3,5 juta atau sekitar Rp 411 tiang bendera tersebut mencapai 541 kaki atau 164 meter. Menurut Guinness World Records, tiang bendera di Tajikistan ini menjadi tiang bendera tertinggi di dunia!Tingginya mengalahkan tiang bendera di Azerbeijan yang setinggi 161 meter dan tiang bendera di Turkmenistan yang setinggi 132 meter. Tiang bendera di Dushanbe pertama kali digunakan untuk pengibaran bendera pada bulan Mei 2011 yang datang ke Istana Negara Tajikistan bisa memotret tiang bendera tertinggi di dunia tersebut. Bendera Tajikistan yang berwarna merah, putih, dan hijau berkibar gagah di atasnya. aff/aff MatematikaTRIGONOMETRI Kelas 10 SMATrigonometriAturan SinusTiang bendera yang tingginya 12 m diamati dari dua tempat A dan B. Jika besar sudut A adalah 45 dan sudut B adalah 30. Jarak A dan B adalah Aturan SinusTrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0208Perhatikanlah gambar AC sama dengan...Perhatikanlah gambar AC sama dengan...0159Pada sebuah segitiga ABC , besar sudut A=60 , besar su...Pada sebuah segitiga ABC , besar sudut A=60 , besar su...0135Perhatikan gambar segitiga ABC di bawah ini. A B C 45 60 ...Perhatikan gambar segitiga ABC di bawah ini. A B C 45 60 ...0423Perhatikan gambar di bawah!Jika panjang sisi KL=10 akar...Perhatikan gambar di bawah!Jika panjang sisi KL=10 akar... Setelah mempelajari perbandingan trigonometri dasar, sudut istimewa, identitas trigonometri, aturan sinus, aturan kosinus, dan persamaan trigonometri, selanjutnya kita akan mempelajari aplikasi trigonometri. Sebelumnya, kita disarankan untuk menguasai terlebih dahulu submateri sebelumnya agar lebih mudah memahami penyelesaian soal mengenai aplikasi trigonometri. Baca Soal dan Pembahasan- Perbandingan Trigonometri Dasar Baca Juga Soal dan Pembahasan- Perbandingan Trigonometri Sudut Istimewa Berikut ini penulis sajikan soal-soal beserta pembahasannya tentang aplikasi soal cerita materi Trigonometri. Soal-soal berikut dikumpulkan dari berbagai sumber, kemudian penulis rangkum pada pos ini. Semoga bermanfaat. Baca Juga Soal dan Pembahasan- Pembuktian Identitas Trigonometri Today Quote Kegagalan adalah hal yang biasa. Hal yang luar biasa adalah bangkit dari kegagalan itu. BAGIAN PILIHAN GANDA Soal Nomor 1 Seekor kelinci yang berada di lubang tanah tempat persembunyiannya melihat seekor elang yang sedang terbang dengan sudut $60^{\circ}$ lihat gambar. Jika jarak antara kelinci dan elang adalah $18$ meter, maka tinggi elang dari atas tanah adalah $\cdots \cdot$ meter. A. $\sqrt{3}$ D. $9\sqrt{3}$ B. $3\sqrt{3}$ E. $12\sqrt{3}$ C. $6\sqrt{3}$ Pembahasan Jika dilihat dari gambar, yang ditanya adalah panjang sisi depan sudut $60^{\circ},$ sedangkan panjang hipotenusa diketahui. Dengan demikian, perbandingan trigonometri yang dapat digunakan adalah sinus, yakni $\begin{aligned} \sin 60^{\circ} & = \dfrac{x}{18} \\ \dfrac{1}{2}\sqrt{3} & = \dfrac{x}{18} \\ x & = 18 \times \dfrac{1}{2}\sqrt{3} = 9\sqrt{3}. \end{aligned}$ Jadi, tinggi elang dari atas tanah adalah $9\sqrt{3}$ meter. Jawaban D [collapse] Soal Nomor 2 Perhatikan gambar di bawah ini. Diketahui seseorang yang berada di atas mercusuar dengan tinggi $45\sqrt{3}$ meter sedang mengamati sebuah objek di bawahnya dengan jarak antara objek dan mercusuar sejauh $135$ meter. Sudut depresi yang terbentuk adalah $\cdots \cdot$ A. $30^{\circ}$ C. $60^{\circ}$ E. $180^{\circ}$ B. $45^{\circ}$ D. $90^{\circ}$ Pembahasan Perhatikan gambar berikut. Besar $\angle ABC$ sama dengan sudut $\alpha^{\circ}$ karena saling berseberangan. Dengan menggunakan konsep tangen, diperoleh $\tan \alpha^{\circ} = \dfrac{45\sqrt{3}}{135} = \dfrac{1}{3}\sqrt{3} \Rightarrow \alpha^{\circ} = 30^{\circ}.$ Jadi, sudut depresi yang terbentuk adalah $\boxed{30^{\circ}}$ Jawaban A [collapse] Soal Nomor 3 Seorang anak yang memiliki tinggi badan $155$ cm terukur sampai ke mata berdiri pada jarak $12$ m dari tiang bendera. Ia melihat puncak tiang bendera dengan sudut elevasi $45^{\circ}$. Tinggi tiang bendera itu adalah $\cdots \cdot$ A. $12,\!00$ m D. $21,\!50$ m B. $12,\!55$ m E. $27,\!50$ m C. $13,\!55$ m Pembahasan Perhatikan sketsa gambar berikut. Dengan menggunakan konsep tangen, diperoleh $\begin{aligned} \tan 45^{\circ} & = \dfrac{BC} {AC} \\ BC & = AC \times \tan 45^{\circ} \\ BC & = 12 \times 1 = 12. \end{aligned}$ Tinggi tiang bendera $t$ adalah jumlah dari panjang $BC$ dengan tinggi anak itu yang terukur sampai mata, yaitu $t = 12 + 1,\!55 = 13,\!55~\text{m}.$ Catatan $155$ cm = $1,\!55$ m. Jadi, tinggi tiang bendera tersebut adalah $\boxed{13,\!55~\text{meter}}$ Jawaban C [collapse] Soal Nomor 4 Dari ujung-ujung landasan pacu Bandara Kuala Namu yang sedang dibangun horizontal, tampak puncak suatu bukit yang dilihat dengan sudut elevasi $53^{\circ}$ dan $14^{\circ}$. Jarak ujung landasan yang lebih dekat sepanjang lereng bukit adalah $870$ meter. Jika $\sin 53^{\circ} = 0,\!8$ dan $\tan 14^{\circ} = 0,\!25,$ maka panjang landasan pacu tersebut adalah $\cdots$ m. A. $ D. $ B. $ E. $ C. $ Pembahasan Permasalahan di atas dapat direpresentasikan oleh sketsa gambar berikut. Karena $\sin 53^{\circ} = 0,\!8 = \dfrac{4}{5},$ maka $\tan 53^{\circ} = \dfrac{4}{\sqrt{5^2-4^2}} = \dfrac{4}{3}.$ Pada $\triangle ABD$, panjang $AD$ dapat ditentukan dengan menggunakan tangen, yaitu $\begin{aligned} \tan 53^{\circ} & = \dfrac{AD} {AB} \\ AD & = AB \times \tan 53^{\circ} \\ AD & = 870 \times \dfrac{4}{3} = \end{aligned}$ Pada $\triangle ACD$, panjang $AC$ dapat ditentukan dengan menggunakan tangen, yaitu $\begin{aligned} \tan 14^{\circ} & = \dfrac{AD} {AC} \\ AC & = \dfrac{AD} {\tan 14^{\circ}} \\ AC & = \dfrac{ = \end{aligned}$ Dengan demikian, $\begin{aligned}BC & = AC- AB \\ & = 870 = \end{aligned}$ Jadi, panjang landasan pacu tersebut adalah $\boxed{ Jawaban C [collapse] Soal Nomor 5 Sebuah kapal berlayar dari Pelabuhan A ke Pelabuhan B sejauh $200$ mil dengan arah $35^{\circ}$. Dari Pelabuhan B, kapal itu berlayar sejauh $300$ mil menuju Pelabuhan C dengan arah $155^{\circ}$. Jarak antara Pelabuhan A ke Pelabuhan C adalah $\cdots$ mil. A. $100\sqrt{2}$ D. $100\sqrt{13}$ B. $100\sqrt{3}$ E. $100\sqrt{19}$ C. $100\sqrt{7}$ Pembahasan Perhatikan sketsa gambar berikut. Titik awal penarikan sudut selalu dimulai dari bagian sumbu-$X$ positif Panjang $AC$ selanjutnya dapat ditentukan dengan menggunakan aturan kosinus. $$\begin{aligned} AC^2 & = AB^2 + BC^2-2 \cdot AB \cdot BC \cdot \cos 60^{\circ} \\ AC^2 & = 200^2 + 300^2-2 \cdot 200 \cdot 300 \cdot \dfrac{1}{2} \\ AC^2 & = + \\ AC^2 & = \\ AC & = \sqrt{ = 100\sqrt{7} \end{aligned}$$Jadi, jarak antara Pelabuhan A ke Pelabuhan C adalah $\boxed{100\sqrt{7}~\text{mil}}$ Jawaban C [collapse] Jasa Les Privat Daring Mengajarkan Matematika SD, SMP, dan SMA serta Dasar-Dasar LaTeXing. Jika berminat, hubungi melalui email shanedizzy6 Soal Nomor 6 Sebuah kapal laut berlayar ke arah timur sejauh $120$ km, kemudian memutar kemudi pada jurusan $30^{\circ}$ sejauh $100$ km hingga berhenti. Jarak kapal dari mula-mula titik berlayar ke tempat pemberhentian adalah $\cdots$ meter. A. $25\sqrt{50}$ D. $27\sqrt{66}$ B. $20\sqrt{91}$ E. $24\sqrt{70}$ C. $24\sqrt{66}$ Pembahasan Perhatikan gambar berikut. Misalkan titik $A$ adalah titik mula-mula dan titik $C$ merupakan titik pemberhentian kapal. Perhatikan bahwa $\angle ABC = 90^{\circ} + 30^{\circ} = 120^{\circ}.$ Karena diketahui sisi-sudut-sisi, untuk mencari jarak yang dimaksud, yakni panjang $AC$, dapat menggunakan aturan kosinus. $$\begin{aligned} AC^2 & = AB^2 + BC^2-2 \cdot AB \cdot BC \cdot \cos \angle ABC \\ & = 120^2 + 100^2-2 \cdot 120 \cdot 100 \cdot \cos 120^{\circ} \\ & = + \cdot 120 \cdot 100 \cdot \left-\dfrac12\right \\ & = + \\ & = = 100 \times 4 \times 91 \\ AC & = \sqrt{100 \times 4 \times 91} \\ & = 10 \times 2 \times \sqrt{91} = 20\sqrt{91}. \end{aligned}$$Jadi, jarak kapal dari mula-mula titik berlayar ke tempat pemberhentian adalah $\boxed{20\sqrt{91}}$ meter. Jawaban B [collapse] Baca Juga Soal dan Pembahasan- Persamaan Trigonometri Soal Nomor 7 Sebuah mobil melaju dari tempat A sejauh $16$ km dengan arah $40^{\circ}$, kemudian berbelok sejauh $24$ km ke tempat B dengan arah $160^{\circ}$. Jarak A dan B adalah $\cdots$ km. A. $21$ D. $32$ B. $8\sqrt{7}$ E. $8\sqrt{19}$ C. $8\sqrt{10}$ Pembahasan Perhatikan sketsa gambar berikut. Pada segitiga $ABC$ di atas, diketahui $AC = 16~\text{km},$ $CB = 24~\text{km},$ dan $\angle ACB = 60^{\circ}.$ Dengan menggunakan aturan kosinus, diperoleh $$\begin{aligned} AB^2 & = AC^2 + CB^2-2 \cdot AC \cdot CB \cdot \cos 60^{\circ} \\ AB^2 & = 16^2 + 24^2-2 \cdot 16 \cdot 24 \cdot \dfrac{1}{2} \\ AB^2 & = 256 + 576-384 \\ AB^2 & = 448 \\ AB & = \sqrt{448} = 8\sqrt{7}. \end{aligned}$$Jadi, jarak A ke B adalah $\boxed{8\sqrt{7}~\text{km}}$ Jawaban B [collapse] [Soal Tipe Asesmen Kompetensi Minimum AKM Bagian Numerasi] Bacalah stimulus berikut untuk menjawab soal nomor 8 dan 9. Berlibur ke Rumah Nenek Hari libur atau liburan adalah suatu kondisi seseorang dapat meluangkan waktu dan terbebas dari pekerjaan atau tugas-tugas sekolah. Pada umumnya, hari libur terjadi pada pertengahan atau akhir tahun, juga pada hari raya. Pada kondisi khusus seperti bencana alam, pemerintah dapat menetapkan hari libur lain. Dalam mengisi hari libur sekolah, Jessica mengunjungi rumah nenek yang terletak di dataran tinggi, yaitu Desa Bojong. Ia pergi diantar oleh ayahnya dengan menggunakan mobil. Ia berangkat dari Kota Tegal menuju Kota Slawi dengan melalui jarak sejauh $10$ km. Sepanjang $2$ km dari Kota Tegal, jalan menanjak dengan sudut kemiringan $12^\circ,$ sedangkan jalan Kota Slawi ke Desa Bojong menanjak sejauh $3$ km dengan sudut kemiringan yang sama. Jarak Kota Slawi dengan Desa Bojong adalah $12$ km seperti tampak pada gambar berikut. Keterangan $\sin 12^\circ = 0,\!20;$ $\cos 12^\circ = 0,\!97;$ $\tan 12^\circ = 0,\!21$ Soal Nomor 8 Berdasarkan stimulus di atas, ketinggian Kota Slawi dari Kota Tegal adalah $\cdots \cdot$ A. $400$ m D. $ m B. $420$ m E. $ m C. $490$ m Pembahasan Perhatikan segitiga siku-siku pada bagian yang diberi kotak. Diketahui bahwa panjang sisi miring pada segitiga siku-siku tersebut adalah $2$ km. Untuk mencari panjang sisi tinggi $h,$ gunakan perbandingan sinus. $$\begin{aligned} \sin 12^\circ & = \dfrac{\text{de}}{\text{mi}} \\ 0,20 & = \dfrac{h}{2} \\ h & = 2 \cdot 0,\!20 \\ h & = 0,\!4~\text{km} = 400~\text{m} \end{aligned}$$Jadi, ketinggian Kota Slawi dari Kota Tegal adalah $\boxed{400~\text{m}}$ Jawaban A [collapse] Soal Nomor 9 Jessica ingin menghitung ketinggian rumah nenek dari Kota Tegal. Ketinggian rumah nenek Jessica dari Kota Tegal adalah $\cdots \cdot$ A. $600$ m D. $ m B. $ m E. $ m C. $ m Pembahasan Sebelumnya, kita sudah mengetahui bahwa ketinggian Kota Tegal dari Kota Slawi adala $400~\text{m}.$ Selanjutnya, kita hanya perlu mencari ketinggian Desa Bojong dari Kota Slawi. Perhatikan segitiga siku-siku pada bagian yang diberi kotak. Diketahui bahwa panjang sisi miring pada segitiga siku-siku tersebut adalah $3$ km. Untuk mencari panjang sisi tinggi $h,$ gunakan perbandingan sinus. $$\begin{aligned} \sin 12^\circ & = \dfrac{\text{de}}{\text{mi}} \\ 0,\!20 & = \dfrac{h}{3} \\ h & = 3 \cdot 0,\!20 \\ h & = 0,\!6~\text{km} = 600~\text{m} \end{aligned}$$Jadi, ketinggian Desa Bojong dari Kota Slawi adalah $600~\text{m}.$ Dengan demikian, ketinggian rumah nenek diwakili oleh ketinggian Desa Bojong dari Kota Tegal adalah $\boxed{400 + 600 = Jawaban B [collapse] [Soal Tipe Asesmen Kompetensi Minimum AKM Bagian Numerasi] Bacalah stimulus berikut untuk menjawab soal nomor 10. Paralaks Bintang Paralaks bintang adalah sudut yang dibentuk oleh garis penghubung antara bintang dengan kedua ujung jari-jari lintasan Bumi. Oleh karena pergerakan Bumi mengelilingi Matahari, bintang seolah-olah terlihat bergerak dalam lintasan elips, yang disebut elips paralaktik. Sudut yang dibentuk antara Bumi-bintang-Matahari $p^\circ$ inilah yang disebut paralaks bintang. Jika bintang dan Bumi semakin jauh, maka paralaksnya akan semakin kecil. Jika kita mengetahui besar paralaks bintang, jarak bintang dengan Matahari dapat ditentukan. Jarak dinyatakan dalam satuan astronomi SA, dengan 1 SA = 150 juta km. Berdasarkan gambar di bawah, $OE$ merupakan radius orbit Bumi dan $OS$ merupakan jarak bintang terhadap Matahari. Jika jarak Matahari terhadap bintang diketahui, jarak bintang terhadap Bumi juga dapat ditentukan. Pergeseran posisi tahunan yang terlihat terhadap bintang terdekat disebut dengan heliosentris paralaks. Ketika posisi Bumi di $E_1,$ maka bintang seolah-olah tampak berada di $S_1.$ Enam bulan kemudian ketika posisi Bumi di $E_2,$ bintang seolah-olah berada di $S_2.$ Paralaks bintang tampak sebagai pergeseran posisi yang cukup besar untuk ribuan bintang terdekat. Untuk lebih jelasnya, simak gambar berikut. $$\begin{array}{cc} \hline \text{Keadaan} & \text{Besar Sudut}~p^\circ \\ \hline \text{Paralaks di bulan Januari–Juni} & 15^\circ \\ \hline \text{Paralaks di bulan Juli–Desember} & 20^\circ \\ \hline \end{array}$$Keterangan $$\begin{array}{cccc} \hline p & \sin p & \cos p & \tan p \\ \hline 15^\circ & 0,\!25 & 0,\!96 & 0,\!26 \\ \hline 20^\circ & 0,\!34 & 0,\!93 & 0,\!36 \\ \hline \end{array}$$ Soal Nomor 10 Berdasarkan stimulus di atas, pernyataan manakah yang bernilai benar? Jarak bintang ke Bumi pada bulan Januari–Juni jika jarak Matahari ke Bumi $1$ SA adalah $400$ juta km. Jarak bintang ke Bumi pada bulan Juli–Desember jika jarak Matahari ke Bumi $1$ SA adalah $600$ juta km. Jarak bintang ke Bumi pada bulan Januari–Juni jika jarak Matahari ke Bumi $2$ SA adalah $ juta km. Jarak bintang ke Matahari pada bulan Januari–Juni jika jarak Matahari ke Bumi $2$ SA adalah $ juta km. Jarak bintang ke Matahari pada bulan Juli–Desember jika jarak Matahari ke Bumi $2$ SA adalah $435$ juta km. Pembahasan Perhatikan bahwa garis penghubung Bumi-bintang-Matahari membentuk segitiga siku-siku sehingga hubungan jarak dan besar sudut dapat ditentukan dengan perbandingan trigonometri. Misalkan jarak Bumi ke Matahari sama dengan $x,$ jarak Matahari ke bintang sama dengan $y,$ dan jarak Bumi ke bintang sama dengan $z.$ Cek Opsi A Pernyataan Salah Diketahui $x = 1~\text{SA}$ dan $p^\circ = 15^\circ.$ Untuk mencari jarak bintang ke Bumi $z,$ gunakan perbandingan sinus. $$\begin{aligned} \sin p^\circ & = \dfrac{x}{z} \\ \sin 15^\circ & = \dfrac{1}{z} \\ 0,\!25 & = \dfrac{1}{z} \\ z & = \dfrac{1}{0,\!25} = 4~\text{SA} \end{aligned}$$Jadi, jarak bintang ke Bumi adalah $4~\text{SA}$ atau setara dengan $$4 \times 150~\text{juta km} = 600~\text{juta km}.$$Cek Opsi B Pernyataan Salah Diketahui $x = 1~\text{SA}$ dan $p^\circ = 20^\circ.$ Untuk mencari jarak bintang ke Bumi $z,$ gunakan perbandingan sinus. $$\begin{aligned} \sin p^\circ & = \dfrac{x}{z} \\ \sin 20^\circ & = \dfrac{1}{z} \\ 0,\!34 & = \dfrac{1}{z} \\ z & = \dfrac{1}{0,\!34} \approx 2,9~\text{SA} \end{aligned}$$Jadi, jarak bintang ke Bumi kira-kira $2,9~\text{SA}$ atau setara dengan $$2,\!9 \times 150~\text{juta km} = 435~\text{juta km}.$$Cek Opsi C Pernyataan Benar Diketahui $x = 2~\text{SA}$ dan $p^\circ = 15^\circ.$ Untuk mencari jarak bintang ke Bumi $z,$ gunakan perbandingan sinus. $$\begin{aligned} \sin p^\circ & = \dfrac{x}{z} \\ \sin 15^\circ & = \dfrac{2}{z} \\ 0,\!25 & = \dfrac{2}{z} \\ z & = \dfrac{2}{0,\!25} = 8~\text{SA} \end{aligned}$$Jadi, jarak bintang ke Bumi adalah $8~\text{SA}$ atau setara dengan $$8 \times 150~\text{juta km} = km}.$$Cek Opsi D Pernyataan Salah Diketahui $x = 2~\text{SA}$ dan $p^\circ = 15^\circ.$ Untuk mencari jarak bintang ke Matahari $y,$ gunakan perbandingan tangen. $$\begin{aligned} \tan p^\circ & = \dfrac{x}{y} \\ \tan 15^\circ & = \dfrac{2}{y} \\ 0,\!26 & = \dfrac{2}{y} \\ y & = \dfrac{2}{0,\!26} \approx 7,\!7~\text{SA} \end{aligned}$$Jadi, jarak bintang ke Matahari sekitar $7,7~\text{SA}$ atau setara dengan $$7,\!7 \times 150~\text{juta km} = km}.$$Cek Opsi E Pernyataan Salah Diketahui $x = 2~\text{SA}$ dan $p^\circ = 20^\circ.$ Untuk mencari jarak bintang ke Matahari $y,$ gunakan perbandingan tangen. $$\begin{aligned} \tan p^\circ & = \dfrac{x}{y} \\ \tan 20^\circ & = \dfrac{2}{y} \\ 0,\!36 & = \dfrac{2}{y} \\ y & = \dfrac{2}{0,\!36} \approx 5,\!6~\text{SA} \end{aligned}$$Jadi, jarak bintang ke Matahari sekitar $5,\!6~\text{SA}$ atau setara dengan $$5,\!6 \times 150~\text{juta km} = 840~\text{juta km}.$$Jadi, pernyataan yang benar dari lima pilihan yang diberikan adalah pernyataan pada opsi C. Jawaban C [collapse] Bagian Uraian Soal Nomor 1 Seorang siswa akan mengukur tinggi pohon yang berjarak $4\sqrt{3}$ m dari dirinya. Antara mata dengan puncak pohon tersebut terbentuk sudut elevasi $30^{\circ}$. Jika tinggi siswa tersebut terukur sampai mata adalah $1,\!6$ m, berapakah tinggi pohon? Pembahasan Perhatikan sketsa gambar berikut. Misalkan $x$ adalah tinggi pohon terhitung dari titik yang setara dengan mata siswa itu. Dengan menggunakan konsep tangen, diperoleh $\begin{aligned} \tan 30^{\circ} & = \dfrac{x} {4\sqrt{3}}\\ x & = 4\sqrt{3} \times \tan 30^{\circ} \\ & = 4\sqrt{3} \times \dfrac{1}{3}\sqrt{3} \\ & = \dfrac{4}{\cancel{3}} \times \cancel{3} = 4~\text{m}. \end{aligned}$ Tinggi pohon $t$ didapat dari jumlah $x$ dengan tinggi siswa yang terhitung sampai mata, yaitu $t = 4 + 1,\!6 = 5,\!6~\text{m}.$ Jadi, tinggi pohon tersebut adalah $\boxed{5,\!6~\text{meter}}$ [collapse] Soal Nomor 2 Suatu pesawat terbang dalam keadaan mendatar dengan ketinggian $ meter dari menara pengawas. Dalam $50$ detik, sudut elevasi pesawat berubah dari $20^{\circ}$ menjadi $52^{\circ}$ dilihat dari puncak menara pengawas. Tentukan kecepatan pesawat itu dalam satuan m/detik Petunjuk $\tan 20^{\circ} \approx 0,\!364$, $\tan 52^{\circ} \approx 1,\!23.$ Pembahasan Perhatikan sketsa gambar berikut. Pada $\triangle ACE$, panjang $AC$ dapat ditentukan dengan menggunakan tangen, yaitu $\begin{aligned} \tan 20^{\circ} & = \dfrac{CE} {AC} \\ AC & = \dfrac{CE} {\tan 20^{\circ}} \\ AC & \approx \dfrac{ \approx \end{aligned}$ Pada $\triangle ABD,$ panjang $AB$ juga dapat ditentukan dengan menggunakan tangen, yaitu $\begin{aligned} \tan 52^{\circ} & = \dfrac{BD} {AB} \\ AB & = \dfrac{BD} {\tan 52^{\circ}} \\ AB & \approx \dfrac{ \approx \end{aligned}$ Dengan demikian, $\begin{aligned} BC & = AC-AB \\ & = = \end{aligned}$ Kecepatan pesawat itu adalah $v = \dfrac{BC} {t} = \dfrac{ = 154,\!74~\text{m/detik}.$ [collapse] Soal Nomor 3 Perhatikan gambar berikut. Gambar di atas menunjukkan seorang anak yang berada pada jarak $32$ meter dari kaki sebuah gedung. Ia mengamati puncak gedung dan helikopter di atasnya dengan sudut elevasi masing-masing $30^{\circ}$ dan $45^{\circ}$. Hitunglah tinggi helikopter tersebut dari atas gedung. Pembahasan Perhatikan sketsa gambar berikut. Ketinggian helikopter dari atas gedung adalah panjang $CD$. Tinjau segitiga $ABC$. Dengan menggunakan konsep tangen, kita peroleh $\begin{aligned} \tan 30^{\circ} & = \dfrac{BC} {AB} \\ BC & = \tan 30^{\circ} \times AB \\ BC & = \dfrac{1}{3}\sqrt{3} \times 32 = \dfrac{32}{3}\sqrt{3}~\text{m}. \end{aligned}$ Berikutnya, tinjau segitiga $ABD$. Dengan menggunakan konsep tangen, kita peroleh $\begin{aligned} \tan 45^{\circ} & = \dfrac{BD} {AB} \\ BD & = \tan 45^{\circ} \times AB \\ BD & = 1 \times 32 = 32~\text{m}.\end{aligned}$ Dengan demikian, diperoleh $\begin{aligned} CD & = BD-BC \\ & = 32-\dfrac{32}{3}\sqrt{3} \\ & = 32\left1-\dfrac{1}{3}\sqrt{3}\right~\text{m}. \end{aligned}$ Jadi, tinggi helikopter dari atas gedung itu adalah $\boxed{32\left1-\dfrac{1}{3}\sqrt{3}\right~\text{meter}}$ [collapse] Soal Nomor 4 Sebuah jalan menghubungkan selatan dan utara. Dari suatu titik pertama pada jalan, suatu bangunan memiliki arah timur $36^{\circ}$ utara dan titik kedua yang berjarak $1$ km dari titik pertama ke arah utara bangunan mempunyai arah selatan $41^{\circ}$ timur. Hitung jarak terpendek dari bangunan ke jalan tersebut. Asumsikan $\tan 41^{\circ} = 0,\!87$ dan $\tan 36^{\circ} = 0,\!73.$ Pembahasan Permasalahan di atas dapat direpresentasikan oleh sketsa gambar berikut ini. Jarak terpendek dari bangunan ke jalan adalah panjang garis tinggi $CD$. Diketahui $AB = 1~\text{km}.$ Dengan menggunakan konsep tangen pada segitiga $BCD$, diperoleh $\tan 41^{\circ} = \dfrac{BD} {CD}~~~~~~~1$ Selanjutnya, dengan menggunakan konsep tangen pada segitiga $ACD$, diperoleh $\tan 36^{\circ} = \dfrac{AD} {CD}~~~~~~~2$ Dengan menjumlahkan kedua persamaan di atas, diperoleh $$\begin{aligned} \tan 41^{\circ} + \tan 36^{\circ} & = \dfrac{BD + AD} {CD} \\ 0,\!87 + 0,\!73 & = \dfrac{AB}{CD} \\ 1,\!6 & = \dfrac{1}{CD} \\ CD & = \dfrac{1}{1,\!6} = 0,\!625. \end{aligned}$$Jadi, jarak terpendek dari bangunan ke jalan tersebut adalah $\boxed{0,625~\text{km}}$ [collapse] Baca Juga Materi, Soal, dan Pembahasan – Aturan Sinus, Aturan Kosinus, dan Luas Segitiga Menurut Trigonometri Soal Nomor 5 Sukardi dengan tinggi $180$ cm mengamati puncak gedung dengan sudut elevasi $45^{\circ}$. Ia kemudian berjalan sejauh $12$ meter mendekati gedung. Di posisi tersebut, Sukardi mengamati puncak gedung kembali dengan sudut elevasi $60^{\circ}$. Tentukan tinggi gedung tersebut. Pembahasan Sketsa gambar berikut merepresentasikan permasalahan di atas. Misalkan $x$ adalah jarak dari posisi baru Sukardi setelah bergerak sejauh $12$ meter ke gedung itu. Dengan menggunakan konsep tangen pad segitiga $AOB$, diperoleh $\begin{aligned} \tan 45^{\circ} & = \dfrac{OB} {AO} \\ OB & = AO \times \tan 45^{\circ} \\ OB & = 12 + x \times 1 = 12 + x \\ x & = OB-12. \end{aligned}$ Selanjutnya, gunakan konsep tangen pada segitiga $COB.$ $\begin{aligned} \tan 60^{\circ} & = \dfrac{OB} {CO} \\ OB & = CO \times \tan 60^{\circ} \\ OB & = x \times \sqrt{3} = \sqrt{3}x \end{aligned}$ Dengan demikian, kita tuliskan $$\begin{aligned} OB & = \sqrt{3}OB- 12 \\ OB & = \sqrt{3}OB- 12\sqrt{3} \\ \sqrt{3}-1OB & = 12\sqrt{3} \\ OB & = \dfrac{12\sqrt{3}} {\sqrt{3}-1} \color{red} {\times \dfrac{\sqrt{3}+1}{\sqrt{3}+1}} \\ OB & = \dfrac{\cancelto{6}{12}\sqrt{3}\sqrt{3}+1} {\cancel{3-1}} \\ OB & = 6\sqrt{3}\sqrt{3}+1 = 18 + 6\sqrt{3}. \end{aligned}$$Tinggi gedung adalah jumlah dari tinggi Sukardi $180$ cm = $1,\!8$ m ditambah panjang $BO$, yaitu $t = 1,\!8 + 18 + 6\sqrt{3} = 19,\!8 + 6\sqrt{3}.$ Jadi, tinggi gedung itu adalah $\boxed{19,\!8 + 6\sqrt{3}~\text{meter}}$ [collapse]

diketahui tiang bendera yang tingginya 18 m